访客

大数据增长黑客(增长黑客简书)

296 hacker 漏洞公布

本文目录一览:

大数据时代的信息安全和未来展望

大数据时代的信息安全和未来展望

随着高级可持续性攻击的出现以及恶意软件的复杂性与日俱增,企业急需一种突破传统信息安全保障模式的、灵活的技术和方案来应对未来不断变化的安全威胁。大数据彻底的改变了信息安全行业,基于大数据分析的智能驱动型安全战略将帮助信息安全从业人员重获警惕性和时间的优势,以使他们更好地检测和防御高级网络威胁。

大数据时代信息安全面临挑战

在大数据时代,无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络使得互联网时时刻刻都在产生着海量的数据。随着产生、存储、分析的数据量越来越大,在这些海量数据背后隐藏着大量的经济与政治利益。大数据如同一把双刃剑,在我们享受大数据分析带来的精准信息的同时,其所带来的安全问题也开始成为企业的隐患。

1、黑客更显著的攻击目标:在网络空间里,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的攻击成本,增加了其“收益率”。

2、隐私泄露风险增加:大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。

3、威胁现有的存储和防护措施:大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。

4、大数据技术成为黑客的攻击手段:在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。

5、成为高级可持续攻击的载体:传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。

6、信息安全产业面临变革:大数据的到来也为信息安全产业的发展带来了新的契机,还没有意识到这场变革的安全厂商将在这场变革大潮中被抛弃。大数据正在为安全分析提供新的可能性,在未来的安全架构体系中,通过大数据智能分析有效的将原来分割的安全产品更好的融合起来,成为不同的安全智能节点,这将是在大数据时代安全产业需要研究突破的重点。

大数据安全未来趋势展望

据MacDonald预测,到2016年,40%的企业(银行、保险、医药和国防行业为主)将积极地对至少10TB数据进行分析,以找出潜在危险的活动。然而,供应商的产品格局却无法在短期内进行转变。现在,企业通常依赖于SIEM系统来关联和分析安全相关的数据,MacDonald表示目前的SIEM产品无法处理这么大的工作量,大多数SIEM产品提供接近实时数据,但只能处理规范化数据,还有些SIEM产品能够处理大量原始交易数据,但无法提供实时情报信息。

Gartner公司分析师表示,使用“大数据”来提高企业信息安全不完全是炒作,这在未来几年内这将成为现实。大数据将为安全团队带来新的工作方式,通过了解大数据的优势、制定切合实际的目标以及利用现有安全技术的优势,安全管理人员将会发现他们在大数据进行的投资是值得的。

RSA大中国区总经理胡军表示,“大数据将带动安全行业方向性的改变,安全与数据互相影响,未来共同促进发展。现今的安全需要更全面和广泛的可视性,敏捷的分析,可采取行动的情报和可扩展的基础设施。”

我们可以看到,大数据安全已经成为不可阻挡的趋势。在未来,不论是从商业需求角度,还是产业技术角度,大数据安全都将成为业界关注的热点。而在这场大数据安全的盛宴中,也必然会出现新老更替、推陈出新,这一切就让我们拭目以待吧!

#数据分析师#数据分析的职业发展方向是什么?

从互联网和大数据的发展形势来看,Python数据分析师的发展前景还是挺不错的。它的主要发展方向包括业务和技术两大方向。

业务方向的岗位包括数据运营、数据分析师、商业分析、用户研究、增长黑客、数据产品经理等,可发展成为商业分析师、战略分析师或管理岗。从事业务型方向的优势是具备更多的商业洞察能力、业务知识和管理知识。

技术方向的岗位包括数据开发工程师、数据挖掘工程师、数据仓库工程师等,提升技术能力,可成长为算法专家或数据科学家。技术方向要求有更高的统计学以及编程知识,当然,薪资也会更高一些。

大数据营销与传统营销的区别是什么?

大数据营销和传统营销区别最大就是营销方式不同:

1.大数据营销

大数据营销,是通过互联网进行一些长期的传统营销记录一些数据,发现其中的规律,通过具体形象的标签,进行一些针对性营销,这样的优势可以把一些针对性强的行业,通过数据推送给精准的人。

2.传统营销

传统营销的是通过一些知名度高的一些载体,进行广泛的去投放,没有具体某一部分人群和属性,当然这样的营销知道现在也是适合的,比如一些日常用品,在各个地区城市,超市的产品投放也属于传统营销。但是对于一些垂直特殊行业用传统营销就比较难了。

对于两种营销方式,没有绝对的好坏,而是要自己的行业适合什么营销方式,或者综合使用。

大数据安全的六大挑战

大数据安全的六大挑战_数据分析师考试

大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。

挑战一:大数据的巨大体量使得信息管理成本显著增加

4个“V”中的第一个“V”(Volume),描述了大数据之大,这些巨大、海量数据的管理问题是对每一个大数据运营者的最大挑战。在网络空间,大数据是更容易被“发现”的显著目标,大数据成为网络攻击的第一演兵场所。一方面,大量数据的集中存储增加了泄露风险,黑客的一次成功攻击能获得比以往更多的数据量,无形中降低了黑客的进攻成本,增加了“攻击收益”;另一方面,大数据意味着海量数据的汇集,这里面蕴藏着更复杂、更敏感、价值巨大的数据,这些数据会引来更多的潜在攻击者。

在大数据的消费者方面,公司在未来几年将处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门现实优势的前提下更透明地沟通的公司将更具竞争优势。

【解决方案】 首先要找到有安全管理经验并受过大数据管理所需要技能培训的人员,尤其是在今天人力成本和培训成本不断上升的节奏中,这一定足以让许多CEO肝颤,但这些针对大数据管理人员的巨额教育和培训成本,是一种非常必要的开销。

与此同时,在流程的设计上,一定要将数据分散存储,任何一个存储单元被“黑客”攻破,都不可能拿到全集,同时对于不同安全域要进行准确的评估,像关键信息索引的保护一定要加强,“好钢用在刀刃上”,作为数据保全,能够应对部分设施的灾难性损毁。

挑战二:大数据的繁多类型使得信息有效性验证工作大大增加

4个“V”中的第二个“V”(Variety),描述了数据类型之多,大数据时代,由于不再拘泥于特定的数据收集模式,使得数据来自于多维空间,各种非结构化的数据与结构化的数据混杂在一起。

未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不接受的现实是,太多无用的信息造成的信息不足或信息不匹配。我们可以考虑这样的逻辑:依托于大数据进行算法处理得出预测,但是如果这些收集上来的数据本身有问题又该如何呢?也许大数据的数据规模可以使得我们无视一些偶然非人为的错误,但是如果有个敌手故意放出干扰数据呢?现在非常需要研究相关的算法来确保数据来源的有效性,尤其是比较强调数据有效性的大数据领域。

正是因为这个原因,对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁就是在过去的几年里,存放于企业数据库中数以TB计,不断增加的客户数据是否真实可靠,依然有效。

众所周知,海量数据本身就蕴藏着价值,但是如何将有用的数据与没有价值的数据进行区分看起来是一个棘手的问题,甚至引发越来越多的安全问题。

【解决方案】 尝试尽可能使数据类型具体化,增加对数据更细粒度的了解,使数据本身更加细化,缩小数据的聚焦范围,定义数据的相关参数,数据的筛选要做得更加精致。与此同时,进一步健全特征库,加强数据的交叉验证,通过逻辑冲突去伪存真。

挑战三:大数据的低密度价值分布使得安全防御边界有所扩展

4个“V”中的第三个“V”(Value),描述了大数据单位数据的低价值。这种广种薄收似的价值量度,使得信息效能被摊薄了,大数据的安全预防与攻击事件的分析过程更加复杂,相当于安全管理范围被放大了。

大数据时代的安全与传统信息安全相比,变得更加复杂,具体体现在三个方面:一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录,这些数据的集中存储增加了数据泄露风险;另一方面,因为一些敏感数据的所有权和使用权并没有被明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题;再一方面,大数据对数据完整性、可用性和秘密性带来挑战,在防止数据丢失、被盗取、被滥用和被破坏上存在一定的技术难度,传统的安全工具不再像以前那么有用。

【解决方案】 确立有限管理边界,依据保护要求,加强重点保护,构建一体化的数据安全管理体系,遵循网络防护和数据自主预防并重的原则,并不是实施了全面的网络安全护理就能彻底解决大数据的安全问题,数据不丢失只是传统的边界网络安全的一个必要补充,我们还需要对大数据安全管理的盲区进行监控,只有将二者结合在一起,才是一个全面的一体化安全管理的解决方案

挑战四:大数据的快速处理要求使得独立决策的比例显著降低

“4个“V”中最后一个“V”(Velocity),决定了利用海量数据快速得出有用信息的属性。

大数据时代,对事物因果关系的关注,转变为对事物相关关系的关注。如果大数据系统只是一种辅助决策系统,这还不是最可怕的。事实上,今天大数据分析日益成为一项重要的业务决策流程,越来越多的决策结果来自于大数据的分析建议,对于领导者最艰难的事情之一,是让我的逻辑思考来做决定,还是由机器的数据分析做决定,可怕的是,今天看来,机器往往是正确的,这不得不让我们产生依赖。试想一下,如果收集的数据已经被修正过,或是系统逻辑已经被控制了呢!但是面对海量的数据收集、存储、管理、分析和共享,传统意义上的对错分析和奇偶较验已失去作用。

【解决方案】 在依靠大数据进行分析、决策的同时,还应辅助其他的传统决策支持系统,尽可能明智地使用数据所告诉我们的结果,让大数据为我们所用。但绝对不要片面地依赖于大数据系统。

挑战五:大数据独特的导入方式使得攻防双方地位的不对等性大大降低

在大数据时代,数据加工和存储链条上的时空先后顺序已被模糊,可扩展的数据联系使得隐私的保护更加困难。过去传统的安全防护工作,是先扎好篱笆、筑好墙,等待“黑客”的攻击,我们虽然不知道下一个“黑客”是谁,但我们一定知道,它是通过寻求新的漏洞,从前面逐层进入。守方在明处,但相比攻方有明显的压倒性优势。而在大数据时代,任何人都可以是信息的提供者和维护者,这种由先天的结构性导入设计所带来的变化,你很难知道“它”从哪里进来,“哪里”才是前沿。这种变化,使得攻、防双方的力量对比的不对等性大大下降。

同时,由于这种不对等性的降低,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术发起新的攻击。“黑客”会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使“黑客”的攻击更加精准。此外,“黑客”可能会同时控制上百万台傀儡机,利用大数据发起僵尸网络攻击。

【解决方案】 面对大数据所带来新的安全问题,有针对性地更新安全防护手段,增加新型防护手段,混合生产数据和经营数据,多种业务流并行,增加特征标识建设内容,增强对数据资源的管理和控制。

挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低

在大数据环境下,数据的使用者同时也是数据的创造者和供给者,数据间的联系是可持续扩展的,数据集是可以无限延伸的,上述原因就决定了关于大数据的应用策略要有新的变化,并要求大数据网络更加开放。大数据要对复杂多样的数据存储内容做出快速处理,这就要求很多时候,安全管理的敏感度和复杂度不能定得太高。此外,大数据强调广泛的参与性,这将倒逼系统管理者调低许多策略的安全级别。

当然,大数据的大小也影响到安全控制措施能否正确地执行,升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。

【解决方案】 使用更加开放的分布式部署方式,采用更加灵活、更易于扩充的信息基础设施,基于威胁特征建立实时匹配检测,基于统一的时间源消除高级可持续攻击(APT)的可能性,精确控制大数据设计规模,削弱“黑客”可以利用的空间。

大数据时代已经到来,大数据已经产生出巨大影响力,并对我们的社会经济活动带来深刻影响。充分利用大数据技术来挖掘信息的巨大价值,从而实现并形成强有力的竞争优势,必将是一种趋势。面对大数据时代的六种安全挑战,如果我们能够予以足够重视,采取相应措施,将可以起到未雨绸缪的作用。

以上是小编为大家分享的关于大数据安全的六大挑战的相关内容,更多信息可以关注环球青藤分享更多干货

大数据时代给信息安全带来的挑战

大数据时代给信息安全带来的挑战

在大数据时代,商业生态环境在不经意间发生了巨大变化:无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络,让以往只是网页浏览者的网民的面孔从模糊变得清晰,企业也有机会进行大规模的精准化的消费者行为研究。大数据蓝海将成为未来竞争的制高点。

大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。

一、大数据成为网络攻击的显著目标。

在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的进攻成本,增加了“收益率”。

二、大数据加大隐私泄露风险。

大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。

三、大数据威胁现有的存储和安防措施。

大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。

四、大数据技术成为黑客的攻击手段。

在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。

五、大数据成为高级可持续攻击的载体。

传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。

六、大数据技术为信息安全提供新支撑。

当然,大数据也为信息安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。对实时安全和商务数据结合在一起的数据进行预防性分析,可识别钓鱼攻击,防止诈骗和阻止黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,利用大数据技术整合计算和处理资源有助于更有针对性地应对信息安全威胁,有助于找到攻击的源头。

大数据面临哪些安全与隐私问题?

(一)大数据遭受异常流量攻击

大数据所存储的数据非常巨大,往往采用分布式的方式进行存储,而正是由于这种存储方式,存储的路径视图相对清晰,而数据量过大,导致数据保护,相对简单,黑客较为轻易利用相关漏洞,实施不法操作,造成安全问题。由于大数据环境下终端用户非常多,且受众类型较多,对客户身份的认证环节需要耗费大量处理能力。由于APT攻击具有很强的针对性,且攻击时间长,一旦攻击成功,大数据分析平台输出的最终数据均会被获取,容易造成的较大的信息安全隐患。

(二)大数据信息泄露风险

大数据平台的信息泄露风险在对大数据进行数据采集和信息挖掘的时候,要注重用户隐私数据的安全问题,在不泄露用户隐私数据的前提下进行数据挖掘。需要考虑的是在分布计算的信息传输和数据交换时保证各个存储点内的用户隐私数据不被非法泄露和使用是当前大数据背景下信息安全的主要问题。同时,当前的大数据数据量并不是固定的,而是在应用过程中动态增加的,但是,传统的数据隐私保护技术大多是针对静态数据的,所以,如何有效地应对大数据动态数据属性和表现形式的数据隐私保护也是要注重的安全问题。最后,大数据的数据远比传统数据复杂,现有的敏感数据的隐私保护是否能够满足大数据复杂的数据信息也是应该考虑的安全问题。

(三)大数据传输过程中的安全隐患

数据生命周期安全问题。伴随着大数据传输技术和应用的快速发展,在大数据传输生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中可能出现逐步失真等。又如,大数据传输处理环节,除数据非授权使用和被破坏的风险外,由于大数据传输的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。

基础设施安全问题。作为大数据传输汇集的主要载体和基础设施,云计算为大数据传输提供了存储场所、访问通道、虚拟化的数据处理空间。因此,云平台中存储数据的安全问题也成为阻碍大数据传输发展的主要因素。

个人隐私安全问题。在现有隐私保护法规不健全、隐私保护技术不完善的条件下,互联网上的个人隐私泄露失去管控,微信、微博、QQ等社交软件掌握着用户的社会关系,监控系统记录着人们的聊天、上网、出行记录,网上支付、购物网站记录着人们的消费行为。但在大数据传输时代,人们面临的威胁不仅限于个人隐私泄露,还在于基于大数据传输对人的状态和行为的预测。近年来,国内多省社保系统个人信息泄露、12306账号信息泄露等大数据传输安全事件表明,大数据传输未被妥善处理会对用户隐私造成极大的侵害。因此,在大数据传输环境下,如何管理好数据,在保证数据使用效益的同时保护个人隐私,是大数据传输时代面临的巨大挑战之一。

(四)大数据的存储管理风险

大数据的数据类型和数据结构是传统数据不能比拟的,在大数据的存储平台上,数据量是非线性甚至是指数级的速度增长的,各种类型和各种结构的数据进行数据存储,势必会引发多种应用进程的并发且频繁无序的运行,极易造成数据存储错位和数据管理混乱,为大数据存储和后期的处理带来安全隐患。当前的数据存储管理系统,能否满足大数据背景下的海量数据的数据存储需求,还有待考验。不过,如果数据管理系统没有相应的安全机制升级,出现问题后则为时已晚。

THE END
相关文章
评论列表
  • 莣萳玖橘
    莣萳玖橘 Jun 27日, 2022 @ 02:18 am 的社交网络使得互联网时时刻刻都在产生着海量的数据。随着产生、存储、分析的数据量越来越大,在这些海量数据背后隐藏着大量的经济与政治利益。大数据如同一把双刃剑,在我们享受大数据分析带来的精准信息的同时,其所带来的安全问题也开始成为企业的隐患。 回复
  • 余安吝吻
    余安吝吻 Jun 27日, 2022 @ 04:12 am 置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。 回复
发布评论
提交