增长黑客和数据产品经理(用户增长黑客)
本文目录一览:
为什么要做数据分析师:职业规划很重要
“数据分析”作为近几年最火热的词汇,越来越受到大家的关注。但和一些应届生或者数据分析师沟通时,发现很多人都对数据分析的职业规划很迷茫。今天我们主要从业务方向的数据分析入手,聊聊数据分析的入门条件及职业规划。
“0基础入行数据分析要掌握哪些技能?”
“怎么能最快找到数据分析工作?”
“数据分析师未来的发展方向是什么?”
数据分析是什么?
数据分析是有关“数据”类岗位的总称。从事这些工作的人,通过分析数据发现业务问题,洞察商业机会点,为运营活动、业务增长及企业发展提供合理建议及参考依据。
数据分析主要是与数据打交道,但数据分析≠分析大数据,所以大家不要对这个职位产生恐惧感,零基础转行数据分析是可行的。要入门的话,3个月的时间也是足够的。
需要注意的是:
1.如果本身对数据不敏感,或者看到复杂的数据就眼晕头疼,那说明你可能不太适合这个岗位。
2.目前数据分析已不再是专职技能,而是职场人必备的通用技能,建议每个职场人都可以学一下,会让你在职场竞争中更有优势。至于是否从事数据分析工作,还是看你对数据的敏感程度以及你对这个岗位的热爱程度。
数据分析岗位方向及工作内容
数据分析可以简单分为业务和技术2大方向:
业务方向——数据运营、数据分析师、商业分析、用户研究、增长黑客、数据产品经理等
技术方向——数据开发工程师、数据挖掘工程师、数据仓库工程师等
业务类岗位的数据分析师大多在业务部门,主要工作是数据提取、支撑各部门相关的报表、监控数据异常和波动,找出问题、输出专题分析报告。
在日常工作中,业务部门往往更关心某个指标的为什么下跌或上升、产品的用户属性是怎样的,如何更好的完成自己的KPI等。
以活跃指标为例,数据分析人员通常要解决以下问题:
指标下跌了多少?是合理范围内的数据波动,还是突发式?(what)
下跌是从什么时候开始的?(when)
是整体用户下跌,还是部分用户?(who)
下跌的原因是什么?产品更新?还是某个渠道推广到期?(why)
怎么解决下跌的问题(how)
在经过了数据提取-数据清洗-多维分析-交叉分析等一系列步骤之后,你发现是某个地区的活跃下跌了,但这并不能作为分析的结论。因为某个地区的活跃下跌只是现象,并不是根本原因。
所以数据分析师要解决的是,为什么这个地区的活跃跌了?是政策因素?还是竞争对手?或者是渠道问题,这些都是需要深入分析的范畴。
找到原因后,数据分析师还需要预测未来的发展趋势,根据目前的分析结果输出可执行的改善策略,最后推动业务部门落地,再次复盘效果,最终形成闭环的分析路径。
对数据分析师而言,解决问题只是一方面,另一方面数据分析师的职责是将业务数据体系化,形成一套指标框架。比如活跃下跌,本质上也是指标问题,如“日活”等指标。
技术方向的岗位如数据挖掘/算法专家等岗位有的归在研发部门,有的则单独成立数据部门。与业务方向的数据分析师相比较来说,数据挖掘工程师要求更高的统计学能力及编程技巧。因为数据挖掘工程师对工具的要求比较高,所以数据挖掘的平均薪资也会高于数据分析师。
数据分析师岗位技能要求
对业务方向的数据分析师而言,掌握工具只是基础,还需要对业务有深入的理解以及较强的数据分析能力。
在工具使用上,数据分析师需要掌握Excel、SQL、PPT、Python等工具。
Excel是日常工作中用到的最多的工具,常用的函数及数据透视表都要学。
SQL是数据分析的核心工具,主要学习Select、聚合函数以及条件查询等内容。
Python重点掌握Pandas数据结构、Matplotlib库、Pyecharts库及Numpy数组。
关于工具的部分,需要注意不同行业对工具的要求会有差异,比如金融行业会要求SAS等工具。一般情况下Excel、SQL、PPT、Python这4种工具就能搞定大部分数据分析工作。
除工具的使用外,数据分析师要了解基本的统计学知识及数据分析方法。
统计学知识:环比、同比、概率分布、变量、抽样等。
数据分析方法:假设检验、回归分析、漏斗分析、多维分析、对比分析等。
针对0基础的小伙伴,建议大家先将精力放在数据分析的思路和训练上,多去看一些商业数据模型和数据分析案例的资料,最终形成自己的分析思路。千万不要一上来就啃Python,可以先上手Exce+SQL这2个简单的数据分析工具来入门。有SQL基础后再学Python会相对容易些。
数据分析师的成长路线
业务方向的数据分析师有2条发展路径。
一条是专精业务,晋升成为商业分析师、战略分析师或管理岗。从业务型发展上来的好处是具备商业网洞察能力,这点是直接做数据挖掘所不具备的。
另一条是提升技术能力,成长为算法专家或数据科学家。
如何快速入门数据分析
应届生想要入行数据分析,建议先做学习规划:
明确自己想走业务方向还是技术方向。
充分调研目标领域的行业知识,了解行业背景及行业相关的指标(在行业的选择上,擅长的、热爱的和有发展前景的即是最佳行业领域)
了解目标行业常用的数据处理工具、数据生产流程及数据应用。针对数据工具进行系统性学习。
0基础转行数据分析,建议先罗列自己的个人优势和行业背景,找到最佳突破口:
如果有运营相关经验,基础工具掌握一般,可以先学习SQL,再从数据运营岗入门。
如果有产品经验,对交互设计和用户体验有深入的理解,可以选择数据产品经理。
如果有金融、物流等行业工作经验,可以借用行业优势,转到相关行业的数据分析岗位。
也就是说,转行数据分析的路径不只有一条,我们要做的是根据自己的背景及优势,找到最适合自己的那条路。
总结:
作为一名合格的数据分析师,你需要至少以下三点技能:
必要的SQL、Excel+python\R技能;
正确的理解业务;
基本的数据使用意识和学习能力。
转行过程中个人必要技能的锤炼是很重要,但保持良好积极的心态也是转行成功的必备要素之一。
什么是增长黑客?
增长黑客的概念起源于硅谷企业家Sean Ellis,是介于技术和市场之间的一个新角色。它主要依靠技术和数据的力量来实现营销目标,而不是通过砸钱来获得用户的传统手段。这一概念引入中国后,“用户增长”成为其知名度的核心。在早期的成长圈中,企业使用的成长手段包括但不限于渠道投放、任务体系、线下活动、优化路径等,行业内曾有一个不成文的规定,不管怎样,只要能带动成长,就去做。
增长的概念在初创企业中很常见。它的手段与营销团队的手段相似,常常混淆。以“成长型产品经理”为例。产品经理主要负责产品开发,以提出用户需求和解决问题为导向;营销团队负责新用户数量和用户参与度;而成长型产品经理处于产品与市场之间,目标是用户成长,通过对用户行为的分析,促进一定指标数据的成长。一般来说,成长团队的运营资金远远少于营销团队。因此,我们应该用更直截了当的语言来理解增长团队在做什么——使用低成本甚至零成本的“技术”手段来实现有效增长的目标。更具体地说,在成长目标的前提下,成长成员观察用户行为,分析行为,划分优先级,然后设计并启动实验进行测试。
目前,国内用户增长可分为“产品导向型”和“新媒体导向型”两类公司。以产品为导向的公司,比如今天的头条新闻,有一个成长团队的目标,就是让用户更频繁、更长久地使用他们的客户。所以成长团队的工作就是通过分析数据寻找机会,通过检验设计“实验假设”,分析结果,看看假设是对是错。假设适用于右翼;如果错误被纠正了,假设就被纠正了,下一个实验将继续。因此,成长团队的大部分工作都与“试错”有关。在这个过程中,掌握SQL技能可以帮助您成长。
媒体导向型企业,由于其“媒体属性”,不仅要随时关注新的增长点,更需要有强烈的内容意识来判断一个话题是否会成为热点。最后,分享运营用户增长的“常规”:aarrr,即获取、激活、保留、实现和推荐。这是最基本的增长方法。简而言之,我们应该关注用户的生命周期,并以数据为导向,直到商业化。
产品运营如何做好数据挖掘与分析
对于产品和运营避免不了要和数据打交道,在打交道的同时如何让数据为产品和运营服务呢?从数据的变化中发现产品的问题,让数据说话,准确的汇报产品和运营的各维度指标的。那就需要通过一些维度来定义产品、运营数据。对于产品和数据分析一般思路可以归集为:了解产品现状的数据、了解发展趋势的数据呈现、发现问题的数据记录、认清用户对产品的使用情况的数据、营销和推广数据。数据分析的维度科划分为:产品现状、了解趋势、发现问题、认清用户、营销与推广。
对于着几个大维度,又回需要不同小维度的划分。产品现状维度会记录数据的来源、PV、UV、人数、次数、收入、用户属性、活跃度。通过这些数据来考量产品的现状。了解趋势的数据,环比、同比、流动模型、增长率、留存率、流失率。发现问题的收集:漏洞模型、问卷调查。认清用户偏好的数据:功能模块使用(数据埋点)、以及热度分析。运营推广的数据:精准化投放、用户生命周期的管理、拉新、留存等。
增长黑客的意思是什么?
随着时代的发展,网络的黑客越来越多。他们入侵用扫描器到处扫描,用IP炸弹轰炸人,漫无目的地入侵和摧毁。它们不利于计算机技术的发展,却有害于网络安全和网络瘫痪,给人们带来巨大的经济和精神损失。黑客通常是指对计算机科学、编程和设计有很高了解的人。
对于黑客来说,学习如何编程是很必要的。计算机是为编程而设计的。运行程序是计算机的唯一功能。数学也是不可缺少的,运行程序其实就是运算,离散数学,线性代数,微积分等等!成长黑客是指创业团队在数据分析的基础上,利用产品或技术手段获得自发成长的操作手段。随着互联网时代的到来,各行各业逐渐发现了广告资源浪费、转化率低的弊端,我们也找到了新的玩转流量的方式。
有运营和成长部门,他们善于发现数据背后的机会,调整策略,并对创新、激活和保留负责。成长黑客本身是一个产品管理的理论框架,而不是一个实践框架。除了一个完美的成长团队,它还需要产品作为内容,工具作为执行手段。成长黑客这个词在高科技领域已经很流行。花你所有的钱去获得尽可能多的用户和收入。重复上述步骤a、B和C,直到你的公司被另一家公司收购或首次公开募股。
它更适合那些有一定商业成功的产品团队。对于初创企业或冷启动产品,成长黑客不是最佳选择。创始人和员工将建立一个真正的公司,而不是稀释他们的持股比例,这对投资者是有利的,他们也不会受到无法提供长期破坏性业务和短期业绩的投资者的持续压力。许多公司在创造产品和获得早期客户时,需要找到投资者来保留债务,但每一家值得尝试的公司都应该在某个时候赚钱。
什么是 Growth Hacker?
“Growth Hacker”在中国普遍译为“增长黑客”,这个在硅谷风靡已久的概念,近几年在国内也不断地被各个企业重视起来。但是这个翻译似乎并不能完全表达Growth的意义。那么首先要先了解其蕴含的意义,那什么是Growth Hacker呢?Growth Hacker指那些能够帮助企业或团队成长的黑客。这个成长可以是用户、流量、营收,而帮助的手段是通过信息技术进行持续的数据营销。Growth Hacker是技术和营销的混血儿,你不仅要懂技术会编程,而且要对数据和用户体验敏感,还要有创造性和好奇心。增长黑客早已经不是一个单打独斗的独行侠形象,而是转变为有体系、有模型、强调试验、追求结果、以团队的形式来推动增长。曲卉(Acorns 市场总监,原 GrowthHackers.com 增长产品经理)在2016 GrowingIO 数据驱动增长大会时讲到增长是下一代的营销,原因如下:关注整个用户生命周期,而不仅仅是获客;
通过数据驱动的方法,不断试验迭代;将增长机制产品化,把增长做到产品里面去。以 LinkedIn 的双重病毒营销为例,老用户可以给新用户发邀请邮件,起到拉新的作用;新用户加入的时候会给老用户发一份提醒邮件,问他要不要来看看,这样可以起到促活的效果。这样的双重循环,LinkedIn 早期的增长团队花了一年半的时间进行打造、细化、优化,甚至为此主动延期其他功能的上线。增长团队日常的运营模式主要是两大部分:战略部分和执行部分。战略部分中,增长团队需要去理解整个公司的商业模式,找重点,定战略,这是比较欠缺的。战略部分需要稍微长一点的周期,比如聚焦做用户激活中某个点,定一个30-90天的小目标。“Growth Hacker”这个词之所以被国外创业公司竞相讨论,并不是因为它只是个媒体创造出来的浮夸辞藻,而是因为 growth hacking 在 Facebook、Twitter、Quora、LinkedIn 等等成功的初创企业背后扮演着举足轻重的角色,这些公司也的确专门为这个角色成立了独立的部门,全权负责用户的增长。